Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Chem Phys Lipids ; 253: 105294, 2023 07.
Article in English | MEDLINE | ID: covidwho-2258359

ABSTRACT

The efficacies of modern gene-therapies strongly depend on their contents. At the same time the most potent formulations might not contain the best compounds. In this work we investigated the effect of phospholipids and their saturation on the binding ability of (6Z,9Z,28Z,31Z)-heptatriacont-6,9,28,31-tetraene-19-yl 4-(dimethylamino) butanoate (DLin-MC3-DMA) to model membranes at the neutral pH. We discovered that DLin-MC3-DMA has affinity to the most saturated monocomponent lipid bilayer 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and an aversion to the unsaturated one 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The preference to a certain membrane was also well-correlated to the phase transition temperatures of phospholipid bilayers, and to their structural and dynamical properties. Additionally, in the case of the presence of DLin-MC3-DMA in the membrane with DOPC the ionizable lipid penetrated it, which indicates possible synergistic effects. Comparisons with other ionizable lipids were performed using a model lipid bilayer of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC). Particularly, the lipids heptadecan-9-yl 8-[2-hydroxyethyl-(6-oxo-6-undecoxyhexyl)amino]octanoate (SM-102) and [(4-hydroxybutyl) azanediyl] di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315) from modern mRNA-vaccines against COVID-19 were investigated and force fields parameters were derived for those new lipids. It was discovered that ALC-0315 binds strongest to the membrane, while DLin-MC3-DMA is not able to reside in the bilayer center. The ability to penetrate the membrane POPC by SM-102 and ALC-0315 can be related to their saturation, comparing to DLin-MC3-DMA.


Subject(s)
COVID-19 , Phospholipids , Humans , Phospholipids/chemistry , Lipid Bilayers/chemistry , Transition Temperature , COVID-19 Vaccines , Phosphorylcholine , Phosphatidylcholines/chemistry
2.
Small Science ; 3(1), 2023.
Article in English | Web of Science | ID: covidwho-2241358

ABSTRACT

Ionizable lipids with branched tails have been used in lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics like COVID-19 vaccines. However, due to the limited commercial availability of branched ingredients, a systematic analysis of how the branched tails affect LNP quality has been lacking to date. Herein, a-branched tail lipids are focused, as they can be synthesized from simple commercially available chemicals, and the length of each chain can be independently controlled. Furthermore, symmetry and total carbon number can be used to describe a-branched tails, facilitating the design of a systematic lipid library to elucidate "structure-property-function" relationships. Consequently, a lipid library is developed containing 32 different types of a-branched tails. This library is used to demonstrate that branched chains increase LNP microviscosity and headgroup ionization ability in an acidic environment, which in turn enhances the stability and in vivo efficacy of mRNA-LNPs. Of the branched lipids, CL4F 8-6 LNPs carrying Cas9 mRNA and sgRNA could achieve 54% genome editing and 77% protein reduction with a single dose of 2.5 mg kg(-1). This mechanism-based data on branched lipids is expected to provide insights into rational lipid design and effective gene therapy in the future.

3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2241081

ABSTRACT

mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant. In this review we have summarized each and every aspect of the mRNA vaccine. The article describes the mRNA structure, its pharmacological function of immunity induction, lipid nanoparticles (LNPs), and the upstream, downstream, and formulation process of mRNA vaccine manufacturing. Additionally, mRNA vaccines in clinical trials are also described. A deep dive into the future perspectives of mRNA vaccines, such as its freeze-drying, delivery systems, and LNPs targeting antigen-presenting cells and dendritic cells, are also summarized.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Humans , COVID-19/prevention & control , Pandemics , mRNA Vaccines , Antigen-Presenting Cells , COVID-19 Vaccines/genetics , Vaccines, Synthetic
4.
Adv Mater ; 35(15): e2209624, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2208859

ABSTRACT

Lipid nanoparticles (LNPs) have proven a successful platform for the delivery of nucleic acid (NA)-based therapeutics and vaccines, with the ionizable lipid component playing a key role in modulating potency and tolerability. Here, a library of 16 novel ionizable lipids is screened hypothesizing that short, branched trialkyl hydrophobic domains can improve LNP fusogenicity or endosomal escape, and potency. LNPs formulated with the top-performing trialkyl lipid (Lipid 10) encapsulating transthyretin siRNA elicit significantly greater gene silencing and are better tolerated than those with the benchmark Onpattro lipid DLin-MC3-DMA. Lipid 10 also demonstrates superior liver delivery of mRNA when compared to other literature ionizable lipids, is well tolerated, and successfully repeat-doses in nonhuman primates. In a prime-boost hemagglutinin rodent vaccine model, intramuscular administration of Lipid-10 LNP elicits comparable or better antibody titers to the SM-102 and ALC-0315 lipid compositions used in the U.S. Food and Drug Administration approved mRNA COVID vaccines. These data suggest that Lipid 10 is a particularly versatile ionizable lipid, well-suited for both systemic therapeutic and intramuscular vaccine applications and able to successfully deliver diverse NA payloads.


Subject(s)
COVID-19 , Nanoparticles , Animals , RNA, Small Interfering/chemistry , Nanoparticles/chemistry , Lipids/chemistry , RNA, Messenger
5.
Acta Pharm Sin B ; 2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2176448

ABSTRACT

There are currently approximately 4,000 mutations in the SARS-CoV-2 S protein gene and emerging SARS-CoV-2 variants continue to spread rapidly worldwide. Universal vaccines with high efficacy and safety urgently need to be developed to prevent SARS-CoV-2 variants pandemic. Here, we described a novel self-assembling universal mRNA vaccine containing a heterologous receptor-binding domain (HRBD)-based dodecamer (HRBDdodecamer) against SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28.1), Delta (B.1.617.2) and Omicron (B.1.1.529). HRBD containing four heterologous RBD (Delta, Beta, Gamma, and Wild-type) can form a stable dodecameric conformation under T4 trimerization tag (Flodon, FD). The HRBDdodecamer -encoding mRNA was then encapsulated into the newly-constructed LNPs consisting of a novel ionizable lipid (4N4T). The obtained universal mRNA vaccine (4N4T-HRBDdodecamer) presented higher efficiency in mRNA transfection and expression than the approved ALC-0315 LNPs, initiating potent immune protection against the immune escape of SARS-CoV-2 caused by evolutionary mutation. These findings demonstrated the first evidence that structure-based antigen design and mRNA delivery carrier optimization may facilitate the development of effective universal mRNA vaccines to tackle SARS-CoV-2 variants pandemic.

6.
Small Science ; 2022.
Article in English | Web of Science | ID: covidwho-2122149

ABSTRACT

Ionizable lipids with branched tails have been used in lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics like COVID-19 vaccines. However, due to the limited commercial availability of branched ingredients, a systematic analysis of how the branched tails affect LNP quality has been lacking to date. Herein, alpha-branched tail lipids are focused, as they can be synthesized from simple commercially available chemicals, and the length of each chain can be independently controlled. Furthermore, symmetry and total carbon number can be used to describe alpha-branched tails, facilitating the design of a systematic lipid library to elucidate "structure-property-function" relationships. Consequently, a lipid library is developed containing 32 different types of alpha-branched tails. This library is used to demonstrate that branched chains increase LNP microviscosity and headgroup ionization ability in an acidic environment, which in turn enhances the stability and in vivo efficacy of mRNA-LNPs. Of the branched lipids, CL4F 8-6 LNPs carrying Cas9 mRNA and sgRNA could achieve 54% genome editing and 77% protein reduction with a single dose of 2.5 mg kg(-1). This mechanism-based data on branched lipids is expected to provide insights into rational lipid design and effective gene therapy in the future.

7.
Front Bioeng Biotechnol ; 10: 1053197, 2022.
Article in English | MEDLINE | ID: covidwho-2119701

ABSTRACT

Intracellular delivery of message RNA (mRNA) technique has ushered in a hopeful era with the successive authorization of two mRNA vaccines for the Coronavirus disease-19 (COVID-19) pandemic. A wide range of clinical studies are proceeding and will be initiated in the foreseeable future to treat and prevent cancers. However, efficient and non-toxic delivery of therapeutic mRNAs maintains the key limited step for their widespread applications in human beings. mRNA delivery systems are in urgent demand to resolve this difficulty. Recently lipid nanoparticles (LNPs) vehicles have prospered as powerful mRNA delivery tools, enabling their potential applications in malignant tumors via cancer immunotherapy and CRISPR/Cas9-based gene editing technique. This review discusses formulation components of mRNA-LNPs, summarizes the latest findings of mRNA cancer therapy, highlights challenges, and offers directions for more effective nanotherapeutics for cancer patients.

8.
ACS Nano ; 16(11): 18936-18950, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2087127

ABSTRACT

Ionizable cationic lipid-containing lipid nanoparticles (LNPs) are the most clinically advanced non-viral gene delivery platforms, holding great potential for gene therapeutics. This is exemplified by the two COVID-19 vaccines employing mRNA-LNP technology from Pfizer/BioNTech and Moderna. Herein, we develop a chemical library of ionizable cationic lipids through a one-step chemical-biological enzyme-catalyzed esterification method, and the synthesized ionizable lipids were further prepared to be LNPs for mRNA delivery. Through orthogonal design of experiment methodology screening, the top-performing AA3-DLin LNPs show outstanding mRNA delivery efficacy and long-term storage capability. Furthermore, the AA3-DLin LNP COVID-19 vaccines encapsulating SARS-CoV-2 spike mRNAs successfully induced strong immunogenicity in a BALB/c mouse model demonstrated by the antibody titers, virus challenge, and T cell immune response studies. The developed AA3-DLin LNPs are an excellent mRNA delivery platform, and this study provides an overall perspective of the ionizable cationic lipids, from aspects of lipid design, synthesis, screening, optimization, fabrication, characterization, and application.


Subject(s)
COVID-19 , Nanoparticles , Mice , Animals , Humans , RNA, Messenger/genetics , RNA, Messenger/chemistry , COVID-19 Vaccines , Lipids/chemistry , COVID-19/prevention & control , SARS-CoV-2/genetics , Nanoparticles/chemistry , Liposomes , Cations , Catalysis
9.
RNA Technologies ; 13:237-255, 2022.
Article in English | Scopus | ID: covidwho-2059698

ABSTRACT

Messenger RNA (mRNA) can be harnessed as vaccines and therapeutic drugs via transient in situ expression of protein antigens and therapeutic proteins, respectively. Currently, mRNA-based vaccines are used worldwide in mass vaccination programs to induce protective immunity against COVID-19, and a number of prophylactic vaccines, therapeutic vaccines, and therapeutic drugs based on mRNA are now tested in clinical trials. Although chemical modification of the mRNA components has considerably ameliorated mRNA stability and immunogenicity, further improvements in formulation and delivery systems, which are used to transport mRNA to the cytosol of target cells, are still required to enhance the efficacy and safety of mRNA therapeutics. However, our knowledge about the mechanisms by which mRNA therapeutics activate the immune system is still very limited, partly because the activation of immune cells by ionizable lipids commonly used in mRNA delivery systems is poorly understood. Lipid-mediated induction of innate immune pathways can be exploited in mRNA vaccines by providing an adjuvant effect, whereas innate immune activation is undesired for the therapeutic use of mRNA. Here, we review recent studies focusing on the hurdles that challenge in vivo delivery of mRNA. We subsequently discuss the state of the art in formulation design approaches, which are used to overcome these challenges, with focus on the marketed COVID-19 mRNA vaccines. Finally, we present research centered on how ionizable and cationic lipids used for delivery of mRNA therapeutics activate immune cells and engage innate immune pathways, including future challenges and opportunities in formulation and delivery to optimize the safe and efficacious use of mRNA therapeutics. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

10.
Front Pharmacol ; 13: 995481, 2022.
Article in English | MEDLINE | ID: covidwho-2043509

ABSTRACT

The messenger RNA (mRNA) vaccines for COVID-19, Pfizer-BioNTech and Moderna, were authorized in the US on an emergency basis in December of 2020. The rapid distribution of these therapeutics around the country and the world led to millions of people being vaccinated in a short time span, an action that decreased hospitalization and death but also heightened the concerns about adverse effects and drug-vaccine interactions. The COVID-19 mRNA vaccines are of particular interest as they form the vanguard of a range of other mRNA therapeutics that are currently in the development pipeline, focusing both on infectious diseases as well as oncological applications. The Vaccine Adverse Event Reporting System (VAERS) has gained additional attention during the COVID-19 pandemic, specifically regarding the rollout of mRNA therapeutics. However, for VAERS, absence of a reporting platform for drug-vaccine interactions left these events poorly defined. For example, chemotherapy, anticonvulsants, and antimalarials were documented to interfere with the mRNA vaccines, but much less is known about the other drugs that could interact with these therapeutics, causing adverse events or decreased efficacy. In addition, SARS-CoV-2 exploitation of host cytochrome P450 enzymes, reported in COVID-19 critical illness, highlights viral interference with drug metabolism. For example, patients with severe psychiatric illness (SPI) in treatment with clozapine often displayed elevated drug levels, emphasizing drug-vaccine interaction.

11.
Nano Lett ; 21(11): 4774-4779, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1241785

ABSTRACT

The COVID-19 pandemic led to development of mRNA vaccines, which became a leading anti-SARS-CoV-2 immunization platform. Preclinical studies are limited to infection-prone animals such as hamsters and monkeys in which protective efficacy of vaccines cannot be fully appreciated. We recently reported a SARS-CoV-2 human Fc-conjugated receptor-binding domain (RBD-hFc) mRNA vaccine delivered via lipid nanoparticles (LNPs). BALB/c mice demonstrated specific immunologic responses following RBD-hFc mRNA vaccination. Now, we evaluated the protective effect of this RBD-hFc mRNA vaccine by employing the K18 human angiotensin-converting enzyme 2 (K18-hACE2) mouse model. Administration of an RBD-hFc mRNA vaccine to K18-hACE2 mice resulted in robust humoral responses comprising binding and neutralizing antibodies. In correlation with this response, 70% of vaccinated mice withstood a lethal SARS-CoV-2 dose, while all control animals succumbed to infection. To the best of our knowledge, this is the first nonreplicating mRNA vaccine study reporting protection of K18-hACE2 against a lethal SARS-CoV-2 infection.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Animals , Humans , Lipids , Mice , Mice, Inbred BALB C , Mice, Transgenic , Pandemics , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
12.
Bioeng Transl Med ; 6(2): e10213, 2021 May.
Article in English | MEDLINE | ID: covidwho-1160664

ABSTRACT

Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nano-delivery system for therapeutic nucleic acids. The great effort put in the development of ionizable lipids with increased in vivo potency brought LNPs from the laboratory benches to the FDA approval of patisiran in 2018 and the ongoing clinical trials for mRNA-based vaccines against SARS-CoV-2. Despite these success stories, several challenges remain in RNA delivery, including what is known as "endosomal escape." Reaching the cytosol is mandatory for unleashing the therapeutic activity of RNA molecules, as their accumulation in other intracellular compartments would simply result in efficacy loss. In LNPs, the ability of ionizable lipids to form destabilizing non-bilayer structures at acidic pH is recognized as the key for endosomal escape and RNA cytosolic delivery. This is motivating a surge in studies aiming at designing novel ionizable lipids with improved biodegradation and safety profiles. In this work, we describe the journey of RNA-loaded LNPs across multiple intracellular barriers, from the extracellular space to the cytosol. In silico molecular dynamics modeling, in vitro high-resolution microscopy analyses, and in vivo imaging data are systematically reviewed to distill out the regulating mechanisms underlying the endosomal escape of RNA. Finally, a comparison with strategies employed by enveloped viruses to deliver their genetic material into cells is also presented. The combination of a multidisciplinary analytical toolkit for endosomal escape quantification and a nature-inspired design could foster the development of future LNPs with improved cytosolic delivery of nucleic acids.

13.
Mol Cancer ; 20(1): 41, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-1105714

ABSTRACT

mRNA vaccines have become a promising platform for cancer immunotherapy. During vaccination, naked or vehicle loaded mRNA vaccines efficiently express tumor antigens in antigen-presenting cells (APCs), facilitate APC activation and innate/adaptive immune stimulation. mRNA cancer vaccine precedes other conventional vaccine platforms due to high potency, safe administration, rapid development potentials, and cost-effective manufacturing. However, mRNA vaccine applications have been limited by instability, innate immunogenicity, and inefficient in vivo delivery. Appropriate mRNA structure modifications (i.e., codon optimizations, nucleotide modifications, self-amplifying mRNAs, etc.) and formulation methods (i.e., lipid nanoparticles (LNPs), polymers, peptides, etc.) have been investigated to overcome these issues. Tuning the administration routes and co-delivery of multiple mRNA vaccines with other immunotherapeutic agents (e.g., checkpoint inhibitors) have further boosted the host anti-tumor immunity and increased the likelihood of tumor cell eradication. With the recent U.S. Food and Drug Administration (FDA) approvals of LNP-loaded mRNA vaccines for the prevention of COVID-19 and the promising therapeutic outcomes of mRNA cancer vaccines achieved in several clinical trials against multiple aggressive solid tumors, we envision the rapid advancing of mRNA vaccines for cancer immunotherapy in the near future. This review provides a detailed overview of the recent progress and existing challenges of mRNA cancer vaccines and future considerations of applying mRNA vaccine for cancer immunotherapies.


Subject(s)
Cancer Vaccines/immunology , Immunotherapy/methods , Neoplasms/therapy , Vaccines, Synthetic/immunology , Animals , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cancer Vaccines/administration & dosage , Humans , Neoplasms/immunology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Vaccines, Synthetic/administration & dosage , Vaccinology/methods , Vaccinology/trends
14.
ACS Nano ; 15(6): 9627-9637, 2021 06 22.
Article in English | MEDLINE | ID: covidwho-1041859

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causal agent of COVID-19 and stands at the center of the current global human pandemic, with death toll exceeding one million. The urgent need for a vaccine has led to the development of various immunization approaches. mRNA vaccines represent a cell-free, simple, and rapid platform for immunization, and therefore have been employed in recent studies toward the development of a SARS-CoV-2 vaccine. Herein, we present the design of an mRNA vaccine, based on lipid nanoparticles (LNPs)-encapsulated SARS-CoV-2 human Fc-conjugated receptor-binding domain (RBD-hFc). Several ionizable lipids have been evaluated in vivo in a luciferase (luc) mRNA reporter assay, and two leading LNPs formulations have been chosen for the subsequent RBD-hFc mRNA vaccine strategy. Intramuscular administration of LNP RBD-hFc mRNA elicited robust humoral response, a high level of neutralizing antibodies and a Th1-biased cellular response in BALB/c mice. The data in the current study demonstrate the potential of these lipids as promising candidates for LNP-based mRNA vaccines in general and for a COVID19 vaccine in particular.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Lipids , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL